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A SUITE OF WEAPON ASSIGNMENT ALGORITHMS
FOR A SDI MID COURSE BATILE MANAGER

1. INTRODUCTION

This document presents a description of the Weapon Allocation and Resource Management (WARM)
algorithms developed by AT&T Bell Laboratories and delivered to the Naval Research Laboratory. This
suite of heuristics runs in AT&T's Local Experimental Test System (LETS), to develop, study, test, and
convincingly demonstrate the operation and effectiveness of the weapon allocation algorithms. This
document describes the approach to building the algorithm suite and in detail the mathematics of several
candidate algorithms for the suite. Although at present the algorithm suite consists of many "loosely
federated" modules of candidate algorithms with shared global data structures, we expect, after analysis
in LETS and thorough testing at NRL by NRL personnel, to determine which subset of algorithms will
"play" best together and define the conditions for their operation. The objective at the end of the
analysis is to bind selected algorithms tightly into a suite for delivery and insertion into the National
Test Facility (NTF) testbed.

This introduction places the work on algorithms presented in this document in perspective with previous
defensive weapon allocation problems. We first present our notation and assumptions and a
decomposition of our problem into successively simpler formulations. We then motivate our approach
to the solution of these formulations with a brief survey of classical optimization techniques. Next the
algorithm suite itself is presented with detailed descriptions of the specific algorithms we have chosen
for development and testing in LETS. Finally we discuss how we will measure the comparative
effectiveness of different combinations of algorithms in varying threat scenarios.

The "Prim-Read" deployments of interceptor missiles and their associated firing plans 0] of the late
1950s defend a collection of separated point targets against an attack by an unknown number of
sequentially arriving ballistic missiles. The scheme involves deploying and firing the interceptors in a
manner that averages the probabilities that each of a prescribed number of attacking weapons destroys
the targeL

More recently, Burr, et. al. t12 showed that the "Greedy Algorithm" when applied to this Prim-Read
problem produces a globally optimal integral solution. The objective function for their study is the
minimization of the total number of interceptors required to defend K targets against an attack of N
missiles, subject to a given upper bound on the maximum target value destroyed per attacking weapon,
where neither N nor upper or lower bounds on N are known to the defender in advance.

There are two types of defenses, point and area. Point defenses consist of weapons dedicated to the
defense of particular targets, while area defenses consist of weapons used to shoot at objects in an area
(or volume) regardless of the object's intended target. The Prim-Read defense focuses on the
deployment of a terminal defense and assumes that the firing plans of these defending interceptors will
be used in a point defense mode. The Strategic Defense Initiative (SDI) raises the possibility of a three
tier defense, i.e., boost, midcourse, and terminal. During boost and midcourse phases, space based
weapons potentially may defend against any missiles in range, i.e., an area defense mode. The area
defense mode of operation is also characteristic of submarine based interceptors, air defenses involving
ground to air and ship to air projectiles, and theater level defenses against short range missiles carrying
conventional warheads.

Manuscrpt approved June 13, 1990.



We study the problem of defensive weapon allocation for area defense after the threat is known, whereas
the Prim-Read problem studies the problem of defensive weapon deployment for point defense before
the threat is known. Our problem is to 1) maximize the expected surviving defensive values given M
interceptors by determining the best firing schedule over time to defend K target sites against N
offensive missiles where 2) any interceptor can kill any missile in range with kill probability dependent
on the missile, the interceptor, and the firing time.

We propose a general weapons assignment model, and a sequence of simplifying assumptions to make
the problem more tractable. For each special case there is an objective function and a set of constraints.
The algorithms that are used to solve each case take advantage of the special circumstances of the
situation.

2. ASSUMPTIONS AND NOTATION

The gei.:ral problem is that of a defensive battle manager that must allocate defensive weapons to
offensive threats to maximize the surviving value of targeted assets. For purposes of generality we
define a "weapon" as having an inventory of "shots" and a "threat object" (TO) to be anything
potentially causing damage to defensive assets. The purpose of this section is to introduce overall
assumptions and notation.

a. We assume that there are K targets consisting of blue assets (population centers, command and
control locations, communications nodes, ICBM launch sites, air fields, etc.), and that each target
k has a value, wk, assigned by the defense. Each blue asset may be targeted by the offense with
one of more threat objects (see Figure 1). The assignment (grouping) of threat objects to blue
assets is the function of a Situation Assessment and Strategic Planning (SASP) battle management
module and this grouping is one input to WARM. The extent of damage caused by a leaking
threat object will be discussed in later paragraphs.

Types of Asset Targeting

Single Threat Object
per Blue Asset

0 Multiple Threat Object
0 per Blue Asset

X

Impact Error Ellipse

Figure 1. Types of targeting supported by WARM algorithms.
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b. We assume that a weapon may be used against TOs aimed at different targets, that multiple
weapons may be used against the same TO, that the destruction of one TO is independent of the
destruction of another TO, and that the defense knows how many threat objects there are during
an attack and the target of each TO.

c. The size of the problem, i.e. the number of weapons times the number of objects, may be very
large -- too large for reasonable solution times. It would be advantageous to aggregate some of
the objects in order to reduce the number that must be considered by the algorithms. Accordingly,
a set of TOs at a givtn instant occupying a predetermined volume of space (bin), traveling as an
ensemble from bin to bin in discretized time steps, and terminating in the same area of the
continental US (CONUS) is called a swarm (see Figure 2).

Object Swarm Moves Threat
As Ensemble Bin to Bin Object

As Weapon Swarms Move Trajectory
Bins

Figure 2. Swarming of weapons and threat objects into spatial bins.

Weapons (and sensors) can also be swarmed in a manner like that of the TOs. Each weapon's
(weapon swarm's) shots at a threat swarm CITS) must be allocated fractionally across theconstituent objects.

We will refer to a global and a local problem (See Figure 3). The global problem is concernedwith shots from weapon swarms to threat swarms in differing time periods over the battle spacetime horizon. The local problem takes the global weapon swarm-threat swarm allocation andindividual shots from particular weapons to particular TOs in differing firing cycles over the next

WARM "think" cycle.

A more detailed mathematical definition of a swarm and a SASP group will be given in Section
2.2.

d. We assume that the defense is able to determine the attack strategy

JKr

where Jk denotes the set of TO indices targeted at k, to be refered to as SASP k. The offensive
threats and their targets are known and may not change during an engagement. We define a firing
schedule ca to be a matrix
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Hierarchical Allocation Matrix

Object Swarms
WARM 2 3 4 5

a 2
WeaponSwarms b 1

W sWeapon

In Time Period I

We.on et

R' ng

C. 1 
eaoc.2 1 /WRetire

shot to be launched this cycle

Figure 3. Allocation matrix for global and local weapon allocation problems.

ato)LaT)J
with, e.g.,firing plan at to

[ a , (1°) ... N.(to)1

a(o) = I'.

where cxj(to) is the number of shots from weapon i allocated to TO j in time period 0. We note
that the oa,(t) are strictly nonnegative integer values. Shots are fired at specific objects at specific
times. Once fired they cannot be redirected. There is an upper bound on the number of shots that
can be fired from a weapon. For scheduling purposes time is divided into a number, T, of discrete
intervals, 10, t, ..... IT between some initial firing time and a time horizon and there may be a
constraint on the number of shots fired from a weapon in a particular time period.

e. Let pq(t)e[0,1] denote the probability that shot i fired at time t kills TO j. We assume that the
pq(t)'s may be different from weapon to weapon and TO to TO, in fact, many p,(t)'s may be
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zero, leading to a sparsely filled Pk matrix (3 dimensional).

We now present five defensive weapons allocation problems, starting with the general problem statement
and giving successively simpler (and more tractable) models of damage to defensive assets.

2.1 General Problem

As the TOs become identified with their targets, the value of destroying the object is related to the
surviving value of thc target at present and in the future. A particular assignment of weapons to objects
may entail a whole set of shot-object encounters, each with a probability of successful destruction of the
object. Furthermore, any of a SASP group's TOs that leak through cause the same amount of damage,
no matter how many leakers there are. The result of all these encounters is a random event -- a set of
"leaking" TOs to damage defensive assets. The objective, then, is to find an allocation that maximizes
the total expected surviving value of the targets under attack. This objective function can be expressed
by the general problem (la,...,z).

SI&] = max(t) 1 wk { IlPr { no TO in swarm j survives firing schedule a } (la)
%~ krX I NA

+ , fk(m) nl Pr {at least one TO in swarm m and no TO in swarm j survives) (lb)

josh

+ [fractional value when at least one TO in exactly 2 swarms survives t ] (Ic)

+ + fA(alljeJk) f- Pr {at least one TO in swarm j survives firing schedule ct }(lz)

where

S [&]: expected surviving value of optimal allocation a*
f () fractional damage function e(0, II

j index of TO or swarm of TOs
Jt set of indices of swarms of TOs going to target k
k : index of target sites
K set of indices of sites k to be defended

The decision variables are the c4.j(t)s. This formulation permits specific damage outcomes to be
identified with each combination of leaker. This formulation is presented for completeness, but is too
complicated for practical solution.

Swarming causes several problems with respect to formulating the objective function with SASP
grouping. A SASP group may be composed of TOs existing in different swarms due to offensive cross
targeting, as illustrated in Figure 4. Swarm P2 is composed of TOs in SASP groups G2, G3 and G4;
G4 is split between swarms P2 and P3. When shots are allocated in the global problem to swarm P2,
these shots, at the local problem, must be applied such that if #7 is shot at then also must #8 be shot at;
there is no benefit to shooting #7 alone with, say #6, with two shots.

2.2 Swarmed Objects, No Partial-Damage Model

The concept of swarms of objects results in two types of swarms: a trivial swarm composed of one
object only, and a swarm composed of more than one object. In the former case the swarm would only
do damage if the single object was a real reentry vehicle (RV) (the possibility exists of it being a
dummy or debris), and if it survives all shots against it. In the latter case the swarm would do damage
if one or more of the constituent objects in the swarm was a real RV and survived all shots. The
general model distinguishes the effects of real RV leakers from different swarms, and allows for partial
damage. Thus in the general model the arguments for the partial damage functions are the specific
swarms where at least one constituent object gets through and is a real RV. The probability of the
leakage part of this event is assumed independent of that of the real RV part of the event, and so the
leakage probability multiplies the probability of being a real RV. The latter probability is actually
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Objects, Groups, & Swarms

SASP Groups G1 FGJ_1 G4 " D

Objects 0(QQQ@e)G0 00 ~
Swarms p I J P2 LI P3 I I1P4 L

SASP Groups I 'Lj J L4' I I I ', I
/ *

Weapon Swarm-Object Swarm '

- '~ Allocation Becomes Independent -
Weapon-Object Assignment Subproblem "

S G2 G3 G4

SASP Groups 0 7 I7

Objects 0
Swarms L 1 Q L.J pJ I A4 I

SASP Groups I J I I

Figure 4. Relationship between threat objects, target groups, and swarms.

incorporated into the partial damage function.

In the more specific model described in this section these probabilities of being real RVs are explicitly
stated as coefficients (13). Another feature of this model is the incorporation of the probability that a TO
may be destroyed by previous in-transit shots before the shots to be allocated intercept iL This
probability is introduced as another coefficient (4). Both of these explicitly stated probabilities are
independent of each other and of the kill probabilities of the current shots. Furthermore, these
probabilities are the same for all members of a swarm. Finally, in this model we assume that any one
TO that gets through the defense essentially destroys all of the value of its target - all of the "partial-
damage" f(.) values from the general formulation (lb,....z) are 0. These assumptions plus some
additional constraints on weapon performance and inventory transform the general model to the
following form:

S[b J=max liwvkl'I - rfl (l-p,,,)'
1-0 k 0 V

T1: 7, 7 , a,, < M: imposed limit on total shots fired

I Y, o I. < I: inventory of weapon swarm v

a (,, • < B,: imposed budget of shots in time t
V 5

y.a,, !5 R,, : limit on shots from weapon swarm v in time t

a, F Z÷, nonneg. integers
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k the index over groups
wk the value associated with group k
s index over threat object swarms
v index over weapon swarms
T time period at end of battle
t index over time periods

p. probability a shot from swarm v at time t gets a member of s
a. number of shots from weapon swarm v at time t assigned to s
n. number of objects in the intersection of group k and swarm s

For notational simplicity we refer to the time intervals to, .... tr with the index teOT.

23 No Swarms. No Partial-Damage Problem

When we assume that each object is distinguishable (one per swarm) and that any one TO that gets
through the defense essentially destroys all of the value of its target, we have (3).

[~ T
S[d' = max lI 1 -I_ pj II( -pij,)%*) (3)

subject to ( same as (2))

This problem probably occurs when precise target/TO pairings are known and may occur during the final

stages of an engagement. In this case one leaker causes total damage of the target.

2.4 One Threat per Target Problem

If we make the further assumption that there is at most one TO aimed at each target, or each target is
"small" enough that each TO's damage can be considered independent of all others, then the product
over jEJk of (3) is reduced to one term. Now the objective is to minimize the inner product, which is
the expected damage to the targets from "leakers" through our defense when we make our set of czj(t)
assignments. Since now the j's and the k's are synonymous, we retain the j index instead of k.

N T
S [a'] = min 1: wj Pj 4jI'I rII ( 1 - pipf ) cl, (4)

0ý j=1 r-O idl

subject to ( same as (2) )

This objective is most applicable when precise targeting is not known and potential target values can be
aggregated across an area target. It is also applicable when object damages are small enough to be
independent of one another.

2-5 Single Shot per Threat Problem

If in (4) each TO j is restricted to a single shot during the firing regime [to,tr] and each weapon can
only fire once during any time interval t then the problem assumes it simplest form

N T
s(d' = max 1 : wi Pj 4, pq, aq, (5)

C4 j-1 t.0 ieJ
subject to T N

11: Y, aq, < M ! T 1, : total of M shots 5 total inventory (5a)
s.O itjt ,=I iad

1: ai, 5 1: one shot for each TO j

Z ai,, S I one shot by each weapon in any t
j=1

a,, e [0.11

This objective is applicable with a "shoot-look-shoot" firing strategy using kill assessment feedback.
The battle manager shoots one (or more) shots, "looks" to determine a kill or miss, shoots again if it
missed, etc. In this formulation the time intervals t might correspond to weapon retire times (thus

7



allowing only one shot per weapon per time period) and the regime T might correspond to the time for
intercept and kill assessment. Using this strategy, the battle manager has good shots, good kill
assessment, and has battle space to fire shots sequentially one at a time to reduce wastage.

We now explore some methods which might solve these objectives; the methods will be drawn from the
areas of mathematics, operations research, and artificial intelligence.

3. CLASSICAL METHODS APPLIED TO NP-COMPLETE PROBLEMS

The next section presents an overview of classical techniques, spelling out their use in solving problems
(2), (3), (4), and (5). The subsequent section presents a detailed description of some candidate
algorithms for our algorithm suite and how they might be integrated to work together.

3.1 Classical Techniques

Mathematical models in operations research may be viewed generally as determining the values of the
decision variables xj, j e {0,1,2,...,n} which

optimize X0 = f ( x1. x2. ... X.)
subject to

gi ( x1. ...,x.) <bi. i = 1, 2, ..., m
xi>Oj=l, 2,.... n

The function f is the objective function, while gi < bi represents the iV' constraint, where bi is a known
constant. The constraints xj a 0 are called the nonnegativity constraints, which restrict the variables to
zero or positive values only.

3.1.1 Linear Methods If f and g, are linear functions of the decision variables xj then the problem may
be formulated as a linear program LP

Maximize X= cj xj
j=l

subject to

i aij xj < bi, i = 1, 2, m
j=.

xj> .0j =1. 2. n

Only formulation (5) qualifies as a linear program. In particular, if the shot limit and inventory
constraint (4a) is removed or strict equality holds, the problem becomes a special and easily solved case
of an LP called an "assignment" problem. One of the fastest assignment algorithms is by Gabow and
Tarjan 131 with run times roughly proportional to (n112)*m*logn where .n=(N+M) and m=N*M+n.
When strict inequality of (5a) holds, the assignment algorithm is not valid and a (0,1) integer LP will
solve problems of relatively small size. Only (5) is lincar, problems (2), (3), and (4) are nonlinear.

3.1.2 Nonlinear Methods Classical optimization theory involves the use of differential calculus to
determine points of maxima and minima (extrema) for unconstrained and constrained nonlinear
functions. The methods may or may not be suitable for efficient numerical computations. In general
consider the problem

maximize Xo = f ( X)
subject to

g (X )!0

where f and g are nonlinear function(s) of the decision vector X.

The Kuhn-Tucker conditions are sufficient for any local maximum (minimum) to be a global maximum
(minimum) if both f and the g are concave (convex). Lloyd and Witsenhausen ý41 have shown that
although (4) is concave, it unfortunately is NP-Complete', and thus cannot be solved for large sized
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problems. One approach that has some hope of finding the global maximum to (4) is to find a
maximum by some nonlinear method and then to employ some rounding scheme to get the integer
solution. Concavity (convexity) is useful in this situation in that it pro'vides an upper (lower) bound on
the integer solution; such information could be used to determine whether or not to try to get a better
(than current) solution by some rounding schemes. Note that we insist on integer solutions, and thus
any solution based on derivatives, i.e., real solutions, must at last be rounded by some scheme. To our
knowledge no generalized rmunding scheme exists to yield the optimal integer solution to an optimal
continuous solution of a concave (convex) NLP.

Unfortunately problems (2) and (3) are neither strictly concave nor strictly convex. Aihhough a local
maximum may be found, the Kuhn-Tucker conditions are no longer sufficient for this maximum to be
the global maximum. A simple example shows why (2) and (3) are multimodal (5',

f (xy) = (1-e-)(l-e-) for x,y > 0

The separate factors of f are concave, but their product is not concave; the Hessian is explicitly

aX2 aX = e-'(+Y) [1 -e -e-Y]
X x a xay 1 e

aXC~y 42

This is negative for z.y near the origin (concavity condition) but is positive for larger x,y (convexity
condition). A maximal solution to a concave NLP for (2) and (3) tells us nothing about the global
maximum; and we still have the problem of rounding to an integer solution.

With a multimodal objective function and integer decision variables we have a problem in combinatorial
optimization. We cannot say that (2) and (3) are NP-Complete and can only conjecture that surely they
are NP-hard.

3.2 Other Methods

Other methods for solving discrete optimization problems fall into two basic classes whether the method
originated in mathematics, operations research, or artificial intelligence. The two classes are
deterministic algorithms and randomized algorithms. We will restrict our presentation of algorithms
according to their applicability to problems in combinatorial optimization - the study of solutions to
NP-hard problems.

3 2.1 Deterministic Algorithms Perhaps the most popular method for discrete problems is dynamic
programming DP. However, DP is plagued by the curse of dimensionality, the number of states can
become very large. There is little hope that DP can solve combinatorial optimization problems when DP
itself is hampered by combinatorially large state spaces for relatively small problems.

Two other deterministic methods are the Branch & Bound and the Greedy methods. These methods are
explored in much greater detail for our use in their own sections, 4.2.1 and 4.1.3 respectively.

322 Randomized Algorithms Existence of NP-hardness is enough circumstantial evidence that no
algorithm of polynomial time is likely to be found. 16) Randomized algorithms, i.e., algorithms with
randomized operations, rule selection, or steps, offer the possibility of globally exploring the feasibility
region and avoiding being trapped at a local optimum. The price is comnutation time. There are
numerous randomized algorithms for combinatorial optimization, and a few ot the more promising ones
are detailed in separate sections below. (At present we know of no randomized algorithm that has been

1. A problem belonsgs to the class of NP-Complete problems if the optimum cannot be bsown, short of exhaustive enumeration.
mad any algorihm solving this problem will, by same transform, solve all problems in the class NP-Complee. NP-Compete
problems belong to the set of NP-hard problems which are characterized by algorithms with run tames bounded oy an
expoenntial hmcuon of the problem size. P problems belong w the set of NP problems but are characterized by algorithms
with run ames bounded by a poIlynonual funcuon of the problem suze.
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characterized to be either polynomial-time or non-polynomial time.)

All randomized algorithms share a common difficulty - convergence criteria and stopping rules. Four
approaches to defining convergence have emerged.

a. Empirical analysis compares one heuristic against other heuristics on the dimensions of computing
time and near-optimality. One heuristic dominates another if both near-optimality and computing
time are better, all other things being equal. Parameters controlling rate of convergence and
quality of solution are tuned according to results. It becomes difficult to transfer results from one
situation or problem to another. This is a very case dependent and therefore unsatisfactory, albeit
expedient, method of determining convergence criteria.

b. Probabilistic analysis requires that a probability distribution over the set of problem solutions be
specified.

Prob Heuristic solution value 1, -

SBest solution value

where for any E>O, &-+0 as the number of samples goes to **. According to the cumulative
distribution function, we can get arbitrarily close to the maximum with probability arbitrarily close
to unity. To form a probabilistic stopping rule one would specify an e and a 8 and sample
solutions until the largest sample value satisfied the above probabilistic statement. The essential
difficulty for this approach is coming up with the distribution of solutions. Note that the maximal
solution value is part of this distribution although the allocation yielding this maximal solution is
not known. Bounding the "Best solution value" from above is not appropriate since, if the
bounding error is greater than e, the randomized algorithm would never stop. Bounding from
below encourages stopping, albeit earlier than preferred.

c. Statistical analysis relies on results from extreme value theory. The distribution of extreme values
(the distribution of the largest (smallest) in a sample of very large size) is a Weibull where

F( xo ) = Prob{ x > xo } = I - exp -((xo-a)/b)c

with a!x o >O and bc>O as scale and shape parameters. To form a statistical stopping rule one
would define a "lot size" of sample solutions, retain the largest solution in each lot (to get the
extreme values), use maximum likelihood estimates of b and c from the extreme values, and,
knowing x0 (the most extreme sample solution) and guessing at a (the global maximum), iterate
until satisfying the "tail" probability F(xo).71 This approach overcomes the difficulty of knowning
the probability distribution of solutions, but still has the difficulty of providing the "guess" a of
the global maximum. Furthermore, to be theoretically valid, this method requires a very large
number of statistically independent samples.

d. Bayesian analysis fits a decision-theoretic framework to the results of various trials and, for each
new trial(s), estimates the likelihood of obtaining a significant improvement, i.e., in general if
P (x;xo) < Cs / Co then stop computing, where Cs is the cost of additional samples (computer
time) and Co is the expected cost of not having the better answer. There is no pretense at
estimating the global optimum nor of divining the distribution of solutions as in the previous
approaches.

With respect to these stopping rules, two randomized search programs are currently popular, Simulated
Annealing and Genetic Search. Simulated Annealing is similar to the process of "cooling" where the
lowest entropy point is the "optimal" in the case of minimization. This point is found by randomly
modulating the solution vector according to entropy laws in the "direction" of lowest descent; sometimes
the random direction is upwards which gets over "little local minimums". Whereas Simulated Annealing
works on only one solution vector at a time, the Genetic Search mates pairs of solutions in much the
same way as the genetic process combines DNA strings and encourages "survival of the fittest". The
Genetic Search has very well defined rules, statistically and theoretically based in genetics, for making
candidate solution vectors whereas the Simulated Annealing rules are heuristics without theoretical basis.
For this reason we have chosen to implement the Genetic Search as an algorithm of randomization. The
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stopping rules suggested by Holland although theoretically sound are not of much practical value for the
problem of asset selection. We have investigated several approaches for stopping rules for the Genetic
Search and our implementation is reported in Section 4.1.3.

4. AN ALGORITHM SUITE FOR WEAPONS ALLOCATION

It was shown in Section 3 that the inclusion of the weapon assignment problem in the class NP-
Complete poses some difficulties for a solution technique. These difficulties are compounded by the
potentially immense size of the problem (100,000 objects and 10,000 weapons). Accordingly, an overall
solution strategy should include, in addition to heuristic algorithms for dealing with the combinatorial
optimization inherent in (2), (3), (4), and (5), techniques for reducing the size of the problem and
possibly breaking it into subproblems for separate solution. One technique for problem size reduction is
to aggregate objects first, and consider only the aggregated entities (swarms) in the subsequent
allocation. Because the allocation problem size is a function • the total number of combinations of
weapons times entities allocated to, the effect of a prior reduction in the number of entities is multiplied
many times.

Besides the difficulties inherent in the problem size, there is also the difficulty of redundantly targeted
assets. Because of the very strong implications of the assumption that all incoming RVs must be
destroyed for an asset to survive, the allocation problem decomposes naturally into two subproblems: a
selection of a set of assets to defend, and an allocation of shots to the objects aimed at the defended
assets. Treating the problem as two subproblems, with separate algorithms addressed to each
subproblem but acting iteratively to achieve an overall solution, results in additional benefits of
flexibility. It will likely not be the case that a single or small set of overall weapon allocation
algorithms can handle well the wide range of circumstances and scenarios that could be seen. The
flexibility of allowing any of the set of asset selection techniques to operate in concert with any of the
weapons allocation schemes increases considerably the variety of overall allocation methods, and will
tend to extend the range of situations that can be handled well.

We have implemented both swarming and the decomposition of the problem into two iteratively solved
subproblems. The order that these functions are performed, as well as other characteristics of the
problem, affect the overall running time. For example, if asset selection is done first, followed by
swarming and finally weapons allocation, the swarming effort, which is certainly dependent on the
number of objects to aggregate, would only have to treat those objects going to the selected assets (thus
saving computer time). On the other hand, swarming within the asset selection/weapons assignment
iterative loop may entail very many redundant swarmings of objects that continually reappear in the set
of those going to defended assets. The balance between these two effects depends, in part, on the
fraction of assets defended (and thus the fraction of objects to be swarmed). If the number of shots
available is small compared to the number of objects, and if the number of iterations is small, the
benefits of including swarming within the iteration loop may outweigh the detriments. It was our
judgement, though, that this would not be the case in general, so we implemented these two functions
with swarming preceding the asset selection/ weapons allocation iterative loop.

We present the techniques for implementing the swarming of threat objects and weapons (to be extended
to sensors) in a report on our internal testbed LETS, since, these algorithms are completely independent
of the weapon allocation problem. Within the context of swarming, though, we note that a swarm of
weapons may be allocated shots directed toward a swarm of threat objects, just as shots may be
allocated from individual weapons toward individual threat objects. We will try to present differences
between weapons and swarms of weapons when relevant, but the reader should always consider a
weapon to be synonymous with weapon swarm, and likewise with threat objects.

The descriptions herein concentrate on the algorithms for solving the asset selection/weapons allocation
subproblems. The two sets of algorithms from which a pair of coordinating algorithms is chosen are
collectively called the algorithm suite. The selected pair from the algorithm suite iteratively computes a
solution in two stages. At the first stage a set of assets are proffered for defense to the second stage,
which, given the set of assets to defend, invokes a local search algorithm for allocation of weapons to
"TOs. After the local search returns a solution another set of assets is chosen for defense. These stages
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are repeated iteratively. The best solution at the end of a decision cycle is delivered to SASP and to the
weapons.

The heuristic algorithms presented here for solving problems (2), (3), (4), and (5) are based on the
discrete deterministic and randomized optimization methods, described in Section 3, and exploit the
features of the various problems.

In selecting among the algorithms particular attention is paid to those algorithms which iteratively build
a solution of higher quality from a previous solution. (and consequently will have longer run times with
more iterations). The idea behind this approach is to obtain one solution as soon as possible, and with
more compute time, to get a better and better solution.

A three asset selection candidate algorithms are described. Each may invoke any one of three weapon
allocation algorithms. The possible combinations of asset selection and weapon allocations algorithms
are:

Weapon Allocation Asset Selection Algorithms
Algorithms King-of-Hill Best Branch Genetic

ALIAS Greedy X X X
PAIRswap Greedy X X X
MARGinal Greedy X X X

Each of the 9 combinations will undergo testing to determine its best operating conditions. These
methods are the only ones included in the WARM software, although other algorithms were considered
during the life of the contract.

4.1 Asset Selection Algorithms

Because an asset must be defended by at least as many shots as there are objects aimed at it in (2) and
(3), total defense of all assets may not be feasible or cost effective. Therefore it is important, as part of
the allocation algorithm, to determine what assets will be defended, and which will be left undefended.
The weights assigned by SASP to the assets affect the asset defense decisions. For K assets each to be
defended or undefended, there are 2e possible combinations when M (#shots) > N (# TOs), otherwise
there are !ess than 2x. Exhaustive search may not be practical and a randomized algorithm (e.g.,
Genetic search) or heuristics must be employed. The following sections describe in detail the asset
selection algorithms included in LETS.

4.1.1 King-of-the-Hill Much like the game of King-of-the-Hill where K subjects scramble for the top
of the hill and the last one on top is eliminated at each "round", this asset selection heuristic eliminates,
at each iteration, the asset with the poorest shot utilization until the objective function "peaks".

The algorithm proceeds by the following steps:

i. Initially consider all assets to be defensible, set n -- 0 (the number of assets eliminated).

ii. Determine a weapon allocation via some method discussed in 4.2.

iii. Knowing the optimal shot allocation d" determine the asset, k:, that is hardest to defend by

Wi T
I wj[ 1- 1- -(I-p )a"•(') I

g ( k: m• 1', (6)

t=0 id j /,t

k: is the asset with the lowest expected surviving value per shot expended on its behalf. Drop
this asset from the defensible set and set n4-n+l.

12



King-of-the-Hill

Iteration: (Asset Selection)

n-1 n n+1

Lowest E[Assey
Shot

Efficiency # Shots on k

E[S] n-i < E[S] n > E[S] n+1

Continue Stop

Figure S. King-of-Hill drops the least defendable asset until a maximum is found.

Equation (6) determines the criterion by which sites become undefended to free up shots for use in
defending "more important" assets. This criterion is based on expected surviving value per shot,
or the average killed TO value per shot for each asset. The asset dropped from the assets to be
defended is that whose ultimate value, wk, seems to be hardest to achieve. There are two cases to
be considered. One occurs when M<N; a cover cannot be obtained. In this case, some assets will
be undefended because some TOs are coming through. But, we have assigned (on a single shot
basis) the best possible shots and the asset with lowest expected value per shot must be deemed
the hardest to defend. Thus, drop it, and use its shots to defend higher expected values. In the
second case, MŽN, a cover over the selected assets is possible. The allocation can be determined,
and again, the hardest to defend asset is dropped.

An interesting situation occurs when, for example, one asset has at least one shot on each of the
objects aimed at it (asset covered) and another asset has at least one object with no shots (asset
uncovered). The shot efficiency measure for the covered asset is the lowest, lower than the shot
efficiency measure for the uncovered asset. Should the covered asset be dropped and the
uncovered asset retained? Many trials substantiate and affirmative answer-, the explanation is that
the uncovered asset has a large weight and the covered asset has a small weight and high Pk
shots. Care must be taken to see that no uncovered assets remain in the final solution even though
the objective function may "peak". Such a rule can cause the expected surviving value to fluctuate
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as asset are dropped one at a time. This fluctuation will be described further later in this section.

iv. Repeat steps ii-iii until the objective function "peaks" (maximized) and when all assets have either
been eliminated or are in the solution; or all assets except the one in the solution have been
eliminated. That is,

S. ( a:, ) > S.+1 ( aL,+1 )

the (n+l)• asset deletion reduces expected surviving value from the n'h. As the hardest to defend
assets are dropped, one by one, the shots become more effectively used, the value of S(a*)
increases until increased shot efficiences cannot offset the value of an undefended asset and S(ci")
begins to fall.

This heuristic is intended to be fast, with (K-1) iterations in the worst case, and does not attempt to
reconsider dropped assets to seek better combinations of defensible assets. Figure 5 shows how the
ordering of assets from iteration to iteration might change as a function of reallocated shots. At iteration
n-i, asset #1 is the most defendable while asset #s is the least defendable; asset #2 is dropped and its
shots are reallocated to the defense of assets #1 and #3-5. Apparently those very shots must have been
applied toward the defense of #3 since it is now the easiest to defend. The expected surviving value of
the defense has increased by dropping #2 and reapplying its shots elsewhere. For the next iteration,
asset #4 is dropped and the strategic shot limit is reallocated across the defense of the remaining three
assets. In this iteration, unfortunately, the expected surviving value of the defense decreases; that is, the
marginal value of the reuse of the shots on #4 is negative.

We have tested this heuristic against several very large scenarios, approximately 1000 threat objects and
180 asqets. Some refinements to the basic King-of-the-Hill algorithm have been required, due to the
fluctuations in the values of the objective function, as mentioned above. Instead of stopping after a
"peak" of just one dropped asset, we now look for a "peak" of 90%. That is, we now define a peak in
the objective function to have formed if the current objective function value is less than 90% of the
incumbent solution (the best solution with no uncovered assets). Assets are dropped one at a time after
a peak is found until only 90% of the best solution remains, and then King-of-the-Hill stops and returns
the incumbent solution.

A slight twist on this rule is the following. We try all combinations of the first two assets to be dropped
just after a peak is found. This might be generalized to the first n assets, but we have not implemented
such a version. For example, asset A is dropped and the objective function decreases, but is still greater
than 90% of maximum. Next A is restored and B (computed on the basis missing A) is dropped. If the
objective function increases, continue with A in and B out, dropping C next. If the objective function
decreases, drop A also. Sometimes, the objective function will increase due to the redistribution of shots
from A and B. If on the other hand, the objective function decreases, continue dropping assets until
either the objective function again peaks indicating a prior "local" peak, or the 90% limit is attained and
search is stopped.

4.1.2 Best Branch The Branch and Bound (B&B) algorithm is another standard deterministic tool used
in integer program optimization. B&B builds a tree of alternative solutions and maximizes the objective
function by searching the tree and pruning branches whose upper bound on the objective function value
is less than some solution already in hand. (An upper bound of a branch is a value not less than any
possible solution from the branch.) In the weapons allocation case, B&B would work by considering, in
turn, the abandonment of each asset defended in the current allocation. (These are the branches from the
current solution.) An upper bound on the objective function resulting from the abandonment of an asset
is compared to the best solution found so far; if it is not as good, the abandonment is not considered.
This technique achieves efficiencies if these upper bounds are both tight and quickly determinable --
then there is the possibility of quickly pruning many branches of the search tree so that they don't have
to be searched.

We have adapted a slight variation of the B&B approach we call the Best Branch (BB) algorithm: all
branches of the current solution are considered sequentially, a pseudo upper bound is found for each,
and we prune all but the best branch, stopping if the best branch from a current solution is not as good
as the current solution. The "upper bounds" are in fact the complete solution values when an asset is
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not defended. If our algorithms always produced optimal solutions at a branch these would be true (and
tight) upper bounds for the solutions at all subbranches, but because our algorithms are instead heuristics
we do not have true upper bounds and thus cannot call this a true B&B technique. Since our solution
algorithms are heuristics, we may achieve a solution value which is less than the actual optimum and
thus we could prune a branch erroneously. Unfortunately, there are no good upper bounding techniques
that are both quick and tight, and loose upper bounds -- those far above the actual bounds -- would tend
to reduce pruning and cause a tremendous amount of extra branch searching. Given that the Best
Branch variation eliminates the these time-consuming searches, it is a reasonable alternative to the
Branch and Bound technique.

A description of the overall BB algorithm follows:

1. Initially, find the best allocation when no targets are abandoned. Call the solution value the best
current solution.

2. Temporarily abandon the next asset not abandoned in the current solution.

3. Use the shot allocation schemes to determine an allocation of shots to TOs. However, do not
allocate any shots to TOs attacking targets that are abandoned. Obtain the objective function
value for the allocation.

4. Restore the temporarily abandoned asset to the defended category. If there is no next asset to be
abandoned, go to (5), else return to (2).

5. Determine which asset's abandonment leads to the best objective function value. If this value is
less than the best current solution, STOP, the best current solution is the final solution. Otherwise
make the asset permanently abandoned and its solution value the best current solution. Go to (2).

4.1.3 Genetic Search The genetic search algorithm was first introduced by J.H. Holland [I] in 1975 and
is currently popularized as a technique for searching an expert's knowledge base and a related area of
data base retrieval.P9 1 Its difficulty in gaining acceptance in a more generalized format for search is the
formulation of a "string" somehow packaging all the information required to evaluate optimality and
simultaneously permitting the application of genetic operators. Genetic search has been studied for
function optimization.11 01 Most recently genetic search is playing a role in machine learning where in
goal-seeking a rule base is generated and modified according to experiential information by genetic
operators. [11]

4.13.1 Theoretical Development A full justification for the efficiency of the Genetic Search cannot be
given in this report and the reader is referred to our references for greater detail. The following
presentation has been adapted to provide a more useful exposition of the search technique for asset
defense selection.

A combinatorial optimization problem may be stated in the following way: "Given a family P of
feasible combinatorial structures, each represented by a point p, and a utility u(p) defined over the
members of P, find the one of them with maximum (minimum) utility." For each point p we assume
that a neighborhood N(p) is defined by other points close to p (by some metric) and will define N(p) in
such a way that an operator (e.g. a "cross-over") acting on two points in N(p) will give another point
(i.e. an "offspring") in N(p). Furthermore points for the operator will be selected from N(p) according
to their utilities, u (p), and the result of the operator will be an "offspring" with either a higher or a
lower utility. For a maximization problem, only the higher utilities are retained from each generation to
form the "offspring" pool from which to make the next generation. The higher the utility, the more
often (relative to lower utilities) will point p be selected, and thus there will be more "offspring" of
generally higher utility. This process is analogous to "hillclimbing" in classical gradient techniques.
The expected number of "offspring" from point pi.. (the ik member of generation n) is

0Op) = si,
( IN , p.)

i

and is greater than I if the u (p") is greater than the average and less than I if less. Thus the best
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pcirformer will reproduce at a compounding rate across generations.

Each "generation" of points p.., creates the next generation of offspring p..,÷+ via a set of genetic
operators. The cross-over genetic operator is the primary operator and mates two asset selections to yield
two new asset selections. Mate selection for cross-over occurs randomly by utility, according to the

N

selection probabilities u(p 4 ,)IYu(p?,n). Consider each asset selection (a vector of 0's and l's indexed

by asset) to be a "string" with a head and tail. A common point for division between the head and tail
may be determined randomly or by some feasibility rules. A cross-over between two asset selections
occurs by exchanging tails to give two offspring asset selections. For example, the following cross over
occurs with a division between positions 5 and 6.

10001110=10001111
X

10000111=10000110

The inversion genetic operator occurs after cross-over on a randomly selected segment on an offspring
asset selection. The inversion operation occurs with probability 8.. An example from the preceding
cross-over is

10001111=10010111

where positions 4 and 5 have been flip-flopped. An inversion operator may take the search from one
N(p) to a neighboring N(p).

The mutation genetic operator alters a single element after an inversion or cross-over operation with
probability y,. An example from the preceding inversion is

10010111=10010101

where the 1 in position 7 has been changed to a 0. A mutation operator may take the search from one
N(p) to some other neighborhood. The operations of inversion and mutation occur rarely and occur
principally to prevent the search from getting stuck at local optima. In this way a new generation of
feasible asset selections is drawn genetically from the current generation.

4.13.2 Application to Asset Selection There are a number of ways of obtaining a "first generation" of
asset selections. An attraction of the genetic algorithm is the ability to include as first generation
elements those solutions to (2) or (3) computed by other (earlier) algorithms, e.g., the asset selection
from King-of-the-Hill (4.1.1) with a random draw to fill out the first generation or Best Branch (4.1.3)
which can fully supply the first generation.

As better and better solutions are retained (and "weaker" ones fall away), the survival rate of successive
offspring will become lower and lower as champions abound. The probabilities of the mutant y. and
inversion 8. operations will determine how quickly the process will converge and how often the search
terminates at a local maximum.

There are a few inherent difficulties with the Genetic Search algorithm. (Incidentally, these difficulties
also occur in the Simulated Annealing algorithm and to a larger extent). Firstly, there is the difficulty of
dealing with "recurring candidates", i.e., the result of the application of the genetic operators will yield a
candidate solution which has been tested in the past. This inefficiency of course grows with the length
of run time. We attempt to minimize its effect by an efficient test of the candidate against the current
pool of champions, but have no test against candidates not in the pool. We actually use the number of
rejected candidates as part of a stopping rule. Holland recommends a stopping rule based upon the
convergence of the average score of the champion pool to within a given relative range. We have found
that this stopping rule is not appropriate for our problem because of the two levels of allocation; the
stopping iteration is very sensitive to the range of convergence and in fact is problem dependent. If the
the objective function is flat near the "peak", then the search converges quickly (depending on the size
of the pool). A small pool size and flat objective function converges more quickly than a larger pool.
This behavior is not consistent with a robust criterion for a stopping rule. Likewise if the objective
function is steep around the peak, then the convergence range may not be met because the size of the
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pool is such that the average score would never fall within the range.

With regard to the four approaches to a stopping rule presented in Section 3.2.2, we have formulated a
stopping rule most akin to the Bayesian approach. In this case we look for the probability of a new
incumbent with the very next sample to be less than the incremental relative cost of having sampled
since the last champion was found. That is, one can sample from a dry well only so long before
drawing the correct conclusion. So we have P(xaxo) < Cs / Co where Xo is the present incumbent
solution, Cs / Co = number of duplicates generated since last champion / 3 * number of assets. This
stopping rule captures the idea that the search has probably found the best to be found once the genetic
operators have regenerated current champions.

In the delivered version of the Genetic Search, the pool of champions is initially populated by random
variation of strings of binary values for the defense of the assets. This approach certainly assures that
the space of possible subsets of assets is spanned, while "seeding" the pool with the ALIAS solution.
We have found this approach to yield satisfactory results. We note that the evaluation of a candidate
asset defense vector is very time consuming since a complete weapon allocation must be performed;
therefore for weapon allocation algorithms other than the ALIAS, we first do ALIAS, and if its solution
is within 95% of the incumbent, only then do we use PAIRS or MARG. This process does not waste
computer time in optimizing an inferior solution, even though, after the genetic crossover operation, it
may be one mate directly leading to the optimal solution. The genetic search is inherently a parallel
algorithm and is included in our algorithm suite for problems where K is large in comparison to M and
N. With proper programming and n processors, the Genetic Search should run in very nearly l/n the run
time of a single processor computer.

42 Weapon Allocation Algorithms

Having determined which assets to defend at a given iteration, it becomes necessary to determine the
best firing schedule for M shots against the selected TOs !N. The following section describes
algorithms which would be used for performing the weapon to TO assets selection given a set of assets
to defend.

42.1 The Greedy Algorithm The greedy algorithm is often used in combinatorial heuristics. It is based
on the idea that the solution ought to be found in a finite series of iterations, and at each iteration the
best values, according to some metric, of a subset of the decision variables are chosen from the range of
possible alternatives. The selection at a particular iteration may affect the choices in future iterations,
but these effects are expressly not considered in the current iteration. For example, this technique might
proceed by entering into the solution at each iteration, that one shot from a weapon with the largest
expected value. A randomized version works by selecting the element to enter the solution at a given
iteration randomly according to a probability mass function which attributes higher probability to
elements of larger expected value. A Mixed-Random Greedy would perform elements of both, some
deterministic and some random. The procedure stops when all shots have been expended.

Worst case performance bounds on the quality of solution for the greedy have been analyzed by
HausMann, eL al., [121 Specific bounds are very problem dependent and they did not study our problem,
however, for cases they did study, the bounds for the worst case performance of the greedy was no less
than 50% of the true maximum. This result is reassuring but not particularly enlightening. In any case
they show that the "k-Greedy"2 may perform more poorly than the "i-Greedy" in the worst case. Hence,
we have selected the 1-Greedy, or the one-shot-at-a-time search.

4.2.2 Greedt, Approximation -- The ALIAS Algorithm Another cnmmon technique in optimization is to
approximate a nonlinear function by piecewise linear functions and solve a sequence of LP problems
(separable nonlinear programming). This might apply in the case of the concave (4) if fractional shots
were permissible, but unfortunately the integer LP problem is NP-Complete.1131 and hence such an

2. The kI-Gnedy seleas k elements w enter the soluuion at a given iteration while the 1-Greedy sets k=1.
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approximation approach is irrelevant without a "rounding scheme" for the fractional shots, in which case
one is driven back to a heuristic approach.

Another approximation approach has promise, however, and will be called the ALIAS algorithm. The
concept behind ALIAS is to approximate (2) and (3) by (4) only for the purpose of getting an allocation
of shots to TOs, and to search for a maximum of (2) and (3) using the allocations computed in (4).

ALIAS

(Weapon Allocation)

WeaponObject 1 2

Select 1 0.6 0.65 (,.'7) =1

max Wj Pij 2 0.7 0.6 0.6 =1
ij 3 0.65 0.0 0.5 =1

Weapon
Inventory

Account for 0 6 0.65 0.21
one shot on j* 0.6 0.18

and repeat (0.65 0.0 0.15

Stop when
all shots are 0.18 0.65 0.21

expended 0.21 0.6 0.18

S0.0 0.15

Greedy Q P13 + ( 1- (1-P21)(1-P31)) = .7 + .895 = 1.595

Optimal P13 + P22 + P31 = 0.7 + 0.6 + 0.65 = 1.95

Figure 6. Example of solution of ALIAS weapon allocation heuristic.

The implementation of ALIAS using the Greedy algorithm on (4) considers each TO in turn potentially
yielding the maximum value to the objective function without regard to shooting at all TOs aimed at an
asset. Some TOs may receive multiple shots while other TO!. for the same asset are not shot even once.
Each TO is allocated some number of shots based upon the kill probability and TO weight. An
allocation of shots on TOs from (4) does not give the objective value in (2) or (3) of multiply targeted
assets, and so the true value of the allocation must be computed.

i. Compute the weight of each TO, wj

wj = wk nj for all j

and set % = 0 for all i, j, and t. The ALIAS objective function (4) uses the weights of the TOs,

18



not the weights of the assets. Each TO is assumed to have equal impact on the survival of its
asset, and thus a TO carries the average weight of TOs on an asset.

ii. Find the maximal element (indexed by i, j. and t) given in (7) of all feasible elements (the
unconstrained shots, in 7a) for entry into the Greedy solution

s (i*, *, t* ) = max Pj tj wj piq (7)

subject to
T
S , <i inventory constraint (7a)

,.o jJi

1, a•, < b: tactical planning budget constraint
id, id

I a, < c: refire constraint

Eventually each TO is allocated some number of shots via this step based upon the kill probability
and threat weight.

iii. Having now made a shot at TO j', revise all kill probabilities for TO jo by this shot's miss
probability for j*. Compute pip', - (1-pipl.o) x Pip, for all i, L

iv. Increment by one the shot allocation of weapon i* on TO j* in time t*. Set -.*,P. +- CljVje- +1.

v. Repeat ii - iv until step ii fails (a maximum of M iterations).

vi. Calculate (2) or (3) using the ALIAS allocation wt* of (4) as the real allocation for (2) or (3)
giving S(ct*) and return to asset selection algorithm.

The implementation of ALIAS using the Greedy algorithm considers each TO in turn yielding the
maximum value to the "approximate" objective function (4) without regard to shooting at all TOs on an
asset as required by (2) and (3). Some threats may receive multiple shots while other TOs for the same
asset are not shot even once. This has a major impact on the asset selection algorithm as some assets
will have a cover, some assets might be uncovered with shots, and still other assets might have no shots
at all. The asset selection algorithm must recognize this situation in its determination of the next set of
assets to try to defend.

Figure 6 presents a very simplistic numerical example of the ALIAS algorithm where 3 shots are
budgeted at 3 TOs. The first rectangle (Pk matrix) gives the weapon-object expected value, i.e., the
expected value of disabling the object (column) by a shot from the weapon platform (row). Each
weapon only has one shot, each object is destined to a unique target, and each target has a value of
unity; thus the expected value in the table is just the kill probability itself. The first "ij" selected lies in
row 1 column 3, i.e., weapon 1 fires its only shot at TO 3 with a kill probability of 0.7. The kill
probabilities in column 3 are corrected to reflect the reduced probability of TO 3 getting through the
defense.

In Pk matrix #2, we observe that the next "ij" chosen lies in row 2 and column 1 with a Pk of 0.7.
Note that even though there exists two "0.7"s row 1, column 3 was selected first, and therefore is the
first to enter the solution. The kill probabilities in column I are corrected to reflect the reduced
probability of TO 1 getting through the defense.

In Pk matrix #3, we observe that the next "ijf chosen lies in row 3 and column 1 with a Pk of 0.195,
even though higher Pks exist in column 2. Column 2 can not be chosen because the two weapons
applicable to column 2 have exhausted their inventory. The ALIAS stops as the 3 budgeted shots have
been used with a solution computed to be 1.595, a solution less than the optimal 1.95 (by observation).
This is a not uncommon behavior for a Greedy type algorithm, i.e., to miss an opportunity at a
significantly better solution due to its looking only one move at a time, but the ALIAS is fast! The
following algorithm corrects to some degree the shortsightedness of the Greedy algorithm.
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4.23 Greedy Backtracking -- The PAIRswap Algorithm In general a backtracking algorithm revises the
incumbent (incomplete) solution by reviewing (backtracking) contingent changes to the incumbent
solution to permit the inclusion of the current candidate variable such that the change has the greatest
(least) marginal return. Forward backtracking starts this process by considering the first variable to enter
the solution, then the second, etc. Backward backtracking starts this process by considering the last
variable to enter, then the next to last, etc. A level one backtrack will make the one best change and
consider no additional changes, while a full backtracker will make all changes possible (with a test for
cycling between changes, which may occur over several iterations). The drawback to a pure
backtracking algorithm, besides the run time, is that all intermediate solutions are incomplete.

PAIRSWAP
(Weapon Allocation)

WeaponObject 1 2 3

ALIAS 1 0.2236 0.65 0 =1

Incumbent 2 0.1691 0.6 0.18 =1
Solution 3 0.1570 0.0 0.15 =1

Weapon
Inventory

Find Best 0.2236 0.65 0.21
Single Shot
Move from 0.18

Object to Object 0.1570 0.0 0.15

P22 - P21/P'21 = 0.6 - 0.1691/0.7 = 0.358
P12 - P13/P'13 = 0.65 - 0.21/0.7 = 0.35

Final 0.216 0.26
Single Shot

Payoff Matrix 0.245 0.24 0.18

After Pairswap 0.2275 0.0 0.15

Pairswap = Optimal P13 + P22 + P31 = .7 + .6 + .65 = 1.95

Figure 7. Example of solution of PAIRswap allocation heuristic.

Our implementation of a "backtracking" algorithm is only one level and begins only after a complete
solution exists, therefore, it is far enough from a pure backtracker that we refer to it by a different name.
We only consider a one level change, i.e., a pairwise swap of shots from one weapon-object allocation
to another weapon-object allocation such that the marginal value for the exchange is (most) positive.
The PAIRswap weapon allocation algorithm takes the ALIAS solution as its starting point and iteratively
looks for the one best shot swap that will maximize the objective function (4). The objective functions
of (2) and (3) have been tried but the extra computation time was not worth the higher quality answer.
For example, a one percent increase (or decrease) in the expected surviving value is not worth twice the
computation time.
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Two cases are considered by the PAIRswap algorithm. Case I occurs when it is possible to move one
shot from a weapon-object to another weapon-object. This is the instance presented in Figure 7. Note
that object 2 did not get a shot because the Greedy algorithm blindly picked the highest Pk shot weapon
2 on object 1 in iteration #2, and then in iteration #3 had to pick a second shot on object 1. The first
matrix in Figure 7 is the result of the ALIAS algorithm on the example given in Figure 6. The
PAIRswap algorithm first chooses the incumbent shot at P13 and tries to move it to P12 yielding a
marginal return of 0.35; or moving it to P11 (not evaluated for obvious reasons). The next incumbent
shot to be considered is that of P21 being moved to P22 yielding a marginal return of 0.358. The final
shot to be considered is P31 to P22 yielding a value of 0.0 or to P31 (not evaluated). The one shot best
move is the shot at P22 (chosen before P31 by ALIAS), which yields the optimal answer. PAIRswap
stops when no moves can be made.

Case 2 involves swaps instead of moves. PAIRswap searches for the one shot best swap at each
iteration. A swap is a move that may involve changing the weapon and period, and because of the
constraints, requires another move to free a "space" for the shot. So two (a pair) of moves (swaps) must
occur, hence the name pair swap (swap a shot from a pair of weapon-object-period allocations). All
possible quadruples are searched at each iteration two find the one best pair of swaps. Of course, in the
implementation, a lot of filtering of possible quadruples can occur.

Like the Genetic Search algorithm, the PAIRswap algorithm is massively parallel, and run times can be
reduced by 1/n when there are n processors.

4.2.4 Greedy MARGinal Returns -- The MARG Algorithm Another implementation of the Greedy to
solve (2) and (3) is to use the marginal effects on the objective function as the selection criterion for
adding a shot at each iteration. When adding a shot does not violate a shot limitation constraint the
difference in the value of the objective function before and after the shot is the marginal effect, but if
the addition of a shot does violate a constraint the marginal effect is determined by finding the currently
allocated shot to 'swap out" for the one under consideration which will yield the best marginal change
in the objective function.

The allocation process can start with no shots allocated, and continue iteratively adding the most
marginally effective until the increased effectiveness of the next best shot is below some pre-set
stopping point. Alternatively, the process could start with an initial non-zero allocation, and proceed
from there (the initial allocation could be that from the previous cycle).

There are a few complications with this approach. The objective (2) is not a "smooth" curve of discrete
points, unfortunately. If, for example, ten objects are targeted on asset k, we get no survival value until
all ten have at least one shot directed at them. When all objects going to an asset have one shot
allocated to them then the survival value from that asset jumps discontinuously from 0 to wkflpj (where

pi is the kill probability of the one shot at object j). We avoid this problem by artificially considering
each targeted asset to be divided into as many subsites as there are objects going to it, with each
subasset having one object associated with it, and carrying 1 INk' the asset weight (where Nk is the
number of objects going to asset k). As the algorithm proceeds, and shots are allocated to objects, if
ever an asset's objects are all allocated shots the asset's artificial subdivision is abandoned, as the
marginal survivability of added shots on objects going to that asset becomes meaningful at that point.
One can think of the problem as that of climbing a hill whose approaches are blocked by a sheer cliff.
The subdivision technique works by laying an inclined plane up to the top of the cliff, and using it to
move up to the hill to be climbed. Once the hill is reached the plane can be removed.

Another complication is the fact that when a shot is allocated to an object that is targeted at an asset, the
shot affects not only the marginal survivability for all subsequent shots on that same object (because the
survival probability of the object is diminished), but also the marginal changes in the survivability due
to shots aimed at all other objects targeted at the same asset (because the overall probability of the
asset's survival is affected also). (Because the additional allocation of a shot changes the "nearby"
marginals, we can describe the effort to find the maximum allocation as "hillclimbing on a rubber
sheet.") Since the addition of more than one shot may change the associated marginals so much that a
new greatest marginal should be determined before going too far in the current direction, acceleration
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techniques that add several shots per iteration cannot be employed; each iteration only adds a single shot
to the allocation. If we have a set of allocations c4,,, the marginal change in the objective function of (3)
if a,,, is increased by 1 (where yefk) is:

There are some variations of the marginal return greedy that may prove effective. One is to keep track
not only of the shot with the highest marginal return at each iteration, but also the second best shoL A
random variate, drawn according to probabilities that depend on the relative difference in these two
marginal values, could determine whether the best or the second best gets picked for inclusion at an
iteration. (If the two values were the same, the probability of either shot being picked is one half; the
chance of the second best shot being picked would decrease as the relative difference gets bigger.) The
final allocation would depend, in part, on chance. Many of these chance-influenced allocations can be
determined concurrently and the best picked.

Another variation is a generalization of the greedy algorithm. If instead of considering shots (a
combination of a single row and column -- weapon and TO) at an iteration, consider sets of k rows and
KYk columns. Using marginal returns as the assignment values, the assignment of a single shot from
each of k rows so that each of the K columns has no more that a single assignment is the easily and
quickly solved assignment problem. The best of all subsets of k rows and K columns in an iteration is a
subassignment that can be allocated just as a single shot is in the previously described greedy algorithm
(indeed, the original greedy is a specific case of this where k=K=l). The other extreme is where k--all
rows and K=all columns, in which at each iteration we find the best suballocation where each TO gets
no more than one shot. It would be useful to see how the quality of the solutions is affected by
changing the parameter k.

Because of the target subdivision artificiality introduced to allow initial allocations to multiply-attacked
targets, at the end of the greedy algorithm there may be one or more assets that only have partial
coverage (possibly because the inventory of shots has been used up). A small postprocessing function
strips away the shots from each of these uncovered assets in turn (shots at a partially covered asset
would be wasted anyway) and allocates these in the same fashion as before to the other assets. This
postprocessing continues until all assets are either totally covered or totally undefended by shots (no
partial coverage).

The greedy and its modifications can all be imbedded in a larger allocation process that first decides
which of the targets to defend and which to abandon.

5. SOLUTION MEASURES OF EFFECTIVENESS

Because the global optimum in (2), (3), and (4) cannot be known with certainty, we are faced with
determining some metrics by which to compare alternative algorithms - solution quality and computer
performance. This section explores some useful measures of effectiveness.

By categorizing the model based on a sequence of simplifying assumptions we can consider the possible
solution approaches for each category. Obviously the more tractable the model, the better chance of a
useful solution. But all solution approaches should be judged by certain standards that will measure
their usefulness or effectiveness. We need to decide what constitutes "effectiveness," determine how to
measure it, and derive some bounds on these measures. We have taken a preliminary look at how to
specify algorithm performance and have found that the measures tend to fall into two categories:
measures of solution quality, and measures of the computational resources need to achieve a solution.

The obvious measure of the usefulness of an algorithm is the quality of its solution -- how does it
compare with the optimum. Here there is a measurement difficulty because -3 find the optimum entails
solving the NP-complete problem which is totally impractical for large problems (and even problems
many would consider small, e.g., a 15x15 multiple assignment problem). The approach we will u is
to compare solutions obtained using candidate heuristic algorithms for large problems, as well as
comparing them with the optimum for problems which are small enough to solve optimally. In some
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cases a "worst-case" analysis will be pcrformed to determine how far from a possible optimum an
algorithm might be.

The robustness of an algorithm should also be considered as a measure of its usefulness. This measure,
though, is very difficult to quantify. What we will do is run the candidate algorithms through a wide
range of parametric variations, and note the effects of these variations on the other measures. A robust
algorithm is one that is useful (in terms of the other measures) over a wide range of problems. We can
at least eliminate candidate algorithms that are dominated by others in the sense that they are no better
than other candidates for any situation, and are worse in some situations.

One measure of usefulness is algorithm run time. An algorithm ought not run longer than the cycle time
between weapons firings and the cycle time between data updates (because in the former case we would
be wasting shot opportunities, and in the latter case we would be wasting information).

Another measure of usefulness is computer memory requirements. An alternative that can serve to
reduce memory requirements is to increase the I/O requirements to mass storage devices, which
increases run times; there is always a tradeoff between speed and program size. There is also a limit to
the data transfer rates into and out of a direct access storage device.
If strict limits to available memory or run time are not available, it would also be useful to quantify
algorithms by their efficiency: the quality of the solution over the resources (time or size) used.

We intend to determine the appropriate algorithms for each category of objective function, recognizing
the effects of simpufying assumptions in each case. Each candidate will be tested parametrically, first in
an effort to "hone" and improve it, and then to compare it with others. The parameters that will be
varied for each candidate include the number of shots, the number of TOs, the weapon refire times, and
the functions relating kill probabilities with range. A worst-case analysis will be performed where
appropriate. In the end we will have a set of reasonable, feasible, and useful algorithms, each identified
with a range of parametric values where they are viable. We will also have ranges of parametric values
within which reasonable and effective shot assignment algorithms exist, and ranges where none of our
algorithms work. This information may be useful for system designers and architects who may have
control over the parameter ranges that will be in effect.

6. SUMMARY

The role of weapons allocation for a battle manager in a fairly diverse battle engagement environment
after missile launch has been modeled by a set of three successively simpler formulations. Sets of
zssumptions that underly each of our specific weapons assignment models have been listed, along with
the restrictions on the algorithms that could be used in each case. The algorithms that will be used must
meet certain performance requirements, which are identified. Our algorithms can solve models (2)
through (5) and operate in an iterative fashion between asset selection and shot allocation given a set of
assets to defend. The algorithms have been designed to allow most combinations of asset selection
algorithm and allocation algorithm. Finally, we tell how we will analyze the algorithms to compare
them, one against the other in the differing situations.
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